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Inverse Problems

Parameter X State U Data Y

N A

st. A(u,z)=0

From left to right: Forward Model F: X — Y

From right to left: Inverse problem

State u is high-dimensional for numerical accuracy

Parameter = can be high-dimensional for resolving spatial heterogeneity
Data are indirect and noisy, often incomplete for estimating =

lll-posedness = non-uniqueness and uncertainty

T. Cui Low Dimensional Structures CSIAM 2/28



Example: Arolla Glacier

Goal: estimating basal sliding coefficients from surface velocity measurements.

~_lce sheet

_V . [Qn(u) Eu B Ip] - pg In Q ‘ Er:gunding h T Ice shelf
V-u=0 inQ :
o,n=0 onl; ‘
u-n=0 onl;
Toun +exp(z)Tu=0 onl

Toe sheet (ref: Nature, 458, 2011)

m u ice flow velocity, p pressure . )
p density, g gravity
m o, = —Ip+ 2n(u)é, stress tensor ,
T ] n unit normal vector
® &, = 3(Vu+ Vu') strain rate tensor o o
x log basal sliding coefficient

1—n
m n(u) = %A‘% &2 effective viscosity

m & = 1tr(&7) second invariant of the
strain rate tensor

T = I — n ® n tangential operator

T'; and I', top and base boundaries
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Inverse Problems: Bayesian Formulation

Likelihood Posterior

Bayes' Rule m(zlyo) o  L(yo|F(z)) x mo(x)
—— ———— ——

Posterior Likelthood Prior

m Prior: Expert knowledge or smooth assumptions based on spatial statistics: e.g.
Gaussian Markov Random field and Gaussian process

m Likelihood: knowledge of the noise e, quantifies the probability of data y, being true
for a given z. E.g., assuming e follows Gaussian distribution, e ~ N(0, Tobs)

)
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Fobs_% [yo - F(ZI})]

L (5ol F(a)) ox exp <—§ |

m Posterior is an update from prior, using likelihood fucntion.



Inverse Problems: Expectation

Summarize information over the posterior distribution by calculating the expected value
of function of interest

E, [g (@) = / 0 (@) 7 (2lyo) do
X

Example: mean E- [z], variance Var, [z] ...

m High-dimensional integrals = Monte Carlo integration
ZT1yeeeyTn ~ 7(|Yo) ]N—Zgiﬂz

m Use MCMC, SMC or importance sampling to get samples We have to evaluate
the posterior many times
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MCMC Sampling
Step n, we have
*% Zn, and m(zn|yo)

1 m Requires many iterations.

= p m Expensive model evaluation
EEEn

m Each z,, is a sample from the

j a(zn,z’) = [ posterior = surrogates?

Tn41 /
A (' |yo)q (&', 2n) Tnt1 =T m Surrogate (ROM):

T(Tn|Yo)q (Tn, z')

8 +

A*(z) = A(z)

If Uniform[0, 1]
< a(zn, )

reject
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Adaptive Delayed Acceptance

_.|

reject

Step n, we have zn,
T (Tn|Yo) and m(zn|yo)

|

( Propose z/ ~ q(zn,-) )

|
’ Tn+1
e

@ (@p, @) =
T (Zn|Yo)q (Tn,z’)

If Uniform[0, 1]
< a(zn,z’)
accept

ﬂ(xn,x/) = ’

(&' [yo) 7" (@ |yo)
T(@n|yo)* (2'[yo)

accept

If Uniform[0, 1]
< B(an,z’)

T. Cui Low Dimensional Structures

m Using a ROM A*(z), we have
afast 7 (z|yo) = 7(x|yo)
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Adaptive Delayed Acceptance
Step n, we have zn,
T (2n|yo) and w(zn|yo)

/1 m Using a ROM A*(z), we have
( Propose ’ ~ g(an,-) ) afast 7*(x|yo) ~ 7(z|yo)
l m Fast acceptance/rejection

Tn4+1 =
Tn

L o
1A (@' |yo)q (¢', zn) ’ n-;:/l

T (Tn|Yo)q (zn, ")

If Uniform[0, 1]
< a(zn,z’)
accept

ﬂ(xn,x/) = ’

(&' [yo) 7" (@ |yo)
T(@n|yo)* (2'[yo)

accept

If Uniform[0, 1]
< B(zn, ")

reject
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Adaptive Delayed Acceptance
Step n, we have zn,
T (xn|yo) and 7"'(51"n|'£/o)

/1 m Using a ROM A*(z), we have
( Propose ’ ~ g(an,-) ) afast 7*(x|yo) ~ 7(z|yo)
l m Fast acceptance/rejection

Tnt+1 =
Tn

T e e
L T o)a (& ) ’ (=

(20 |Y0)q (Tn, ') m Using the full model to ensure

sampling the exact posterior
If Uniform[0, 1
< a(xn,

accept

B (zn,z') = | ’

(&' [yo) 7" (@ |yo)
T(@n|yo)* (2'[yo)

If Uniform[0, 1] accept

< B(zn,z")

reject

T. Cui Low Dimensional Structures CSIAM 7128



Adaptive Delayed Acceptance

_.|

Step n, we have zn,
T (2n|yo) and w(zn|yo)

|

( Propose z/ ~ q(zn,-) )

!

Tn4+1 =
Tn

reject

T. Cui

@ (@p, @) = j
77*(5'3/|yo)q (Cl:/, Zn)
T*(Zn|Yo)q (Tn, ')

If Uniform[0, 1
< a(zn,

accept

B (zn,z') = |
(@ [yo)T* (2nlyo)
(@nlyo) ™ (z'[yo)

If Uniform[0, 1]
< B(zn,z")

Tyt
@

accept

m Using a ROM A*(z), we have
afast 7" (z|yo) = m(x|yo)

m Fast acceptance/rejection
A"

m Using the full model to ensure

sampling the exact posterior

m Using new sample to update
the reduced order model

Analyzed by Chen and Liu (1998),
Christen and Fox (2005), and Cui et
al. (2010)

Low Dimensional Structures
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Model Reduction: Background

Consider the PDE model
B(z)u+ G(z,u) =0.
N—— N——

Linear Nonlinear

u € RN, N, is usually large.

Reduced basis

For a target region of the parameter space, suppose the corresponding state u(z) can
be captured by an r-dimensional subspace, spanned by ® € RY=*" r << N..

Reduced order model

Approximate solution u(z) ~ ®u,(z), a smaller system of equations:

Galerkin : @' [B(z)®u, 4+ G(z, ®u,)] = 0,

G(z, ®u,) can be handled by discrete empirical interpolation methods (DEIM)® or mis-

v

sion point method® ...

¢ Chaturantabut & Sorensen, SIAM Journal on Scientific Computing, 2010

b Astrid et al., [IEEE Transactions Automatic Control, 2008
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Model Reduction: Example

Poisson’s Equation: — = f and observation operator C — y =

Given a reduced basis ®, approximate the state

SEan
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Model Reduction: Example

Then apply Galerkin projection

¢T

Reduced observation operator
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Model Reduction: Example

Given B,.(z) = z)®, f, =@ f, C,. = Cd, the full model

is reduced to
o0 - -0 - &

Reduced forward model y. = F*(z).

Low Dimensional Structures



Adaptive Model Reduction

The key is to identify the reduced basis ®.

m Generate parameter samples z;,...,zm, T & prior
solve A(u;,z;) = 0 to obtain snapshots of 4+ Prigpshapshots
states {u1,...,Um}- 3

m Orthogonalize the snapshots to get basis ®. :

m Traditionally, snapshots are computed at '

prior samples™. 0

* Wang & Zabaras, Int. J. Heat Mass Transfer, 2004
* Lieberman, Willcox, & Ghattas, SIAM Journal on Scientific Computing, 2010
* Lipponen, Seppnen & Kaipio, Inverse Problems Imaging, 2013
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Adaptive Model Reduction

The key is to identify the reduced basis ®.

m Generate parameter samples z;,...,Zm, p—
solve A(u;,z;) = 0 to obtain snapshots of
states {u1,...,um}-

m Orthogonalize the snapshots to get basis ®.

m Traditionally, snapshots are computed at
prior samples™.

= However, the support of the posterior can be
dramatically different from the prior.

m We designed a new model reduction ap-
proach to adaptively select snapshots from
posterior.

* Wang & Zabaras, Int. J. Heat Mass Transfer, 2004
* Lieberman, Willcox, & Ghattas, SIAM Journal on Scientific Computing, 2010
* Lipponen, Seppnen & Kaipio, Inverse Problems Imaging, 2013
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Online Construction of ROM

Consider Poisson’s Equation —V - (k(z)Vu) = f. Given partial observation of u, wish
to reconstruct the diffusivity &, parametrized by .

Full model

B(@)u(z) = f, y(z) = Cu(z),
C': observation operator, d: model outputs.

v

Reduced order model (ROM)

Given reduced basis V/, we have

~—

O B(x)Pur(z) = f, yr(x)=CP u(z).
B (x) f Cr
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Error Indicator: Dual Weighted Residual

We want to estimate the true error
t(z) = Cu(z) — CPu,(x)

without solving the full model.

Dual Weighted Residual

m Dual solution y(z) = B(z)~TCT
m Residual r(z) = f — B(z)®u,(x)
m The true error is given by
v(z)"r(x) = CB(z)'[f — B(x)®ur(z)]
= Cu(z) — CPu,(x)
= t(z)

v

The dual solution ~ provides a way to quantify the impact of residual on the true error.
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Error Indicator: Approximated Dual Weighted Residual

m Computing the exact dual solution v(z) for each z is not feasible.

= Meyer and Matthies (2003) approximate the dual solution by using a ROM that
has higher order of accuracy.

m In our setting, the maximum a posteriori estimate (MAP) provides a good
estimate of the dual solution:
¥~ vy(xmar)

m We can also use full model evaluations at posterior samples to build a library of
dual solutions.
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Online Construction of ROM

From z,,, sampling * for m iterations

Estimate the error £(x,,1:)
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Online Construction of ROM

From z,,, sampling * for m iterations
Estimate the error £(x,,1:)

If |£| > eori > m,
evaluate , and 3

If |£| > e, update
ROM

| lterate forward |

m The Gram-Schmidt procedure is used to update the reduced basis vectors for a
new snapshot.

m The above procedure samples the exact posterior, because of the correction
using 7, and 3.
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Approximate Algorithm

From z,,, sampling ©* for m iterations

Estimate the error £(z4:) -

If |{| > ¢, update
ROM

| lterate forward |
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Approximate Algorithm

From z,,, sampling ©* for m iterations

Estimate the error £(z4:) -

If |{| > ¢, update
ROM

| lterate forward |

If |£] > ¢, evaluate
m, and update ROM

|Otherwise, T |

| lterate forward |
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Approximate Algorithm

From z,,, sampling ©* for m iterations

Estimate the error £(z4:) -

If |{| > ¢, update
ROM

| lterate forward |

If |£] > ¢, evaluate
m, and update ROM

|Otherwise, T |

Approximate | Iterate forward |
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Mean Square Error

The approximate algorithm does not sample from the exact posterior. However

Mean Square Error

Given samples z; ~ 7(+|d), for some estimator

1= 5 20w~ [ owntai)is

The mean square error

MSE(§) = Var(g) + Bias(3)?

® Bias(6)? = 0 for standard MCMC and the exact algorithm.
® Bias(0)? # 0 for the approximate algorithm. But

Bias(9)® < Cé®

Using Hellinger distance
Var(0)

® Var(d) = dominates the MSE for small ¢, because the effective sample
size (ESS) is usually small.
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Example 1: A 9D Test Case

In the domain r € [0, 1]?,
try to infer the diffusivity

k(?‘) = Z b1 (7”)1’1

log(x:) ~ N (pi, 07)

1 21 pOtentla| True Parameter True Solution
. 0.06

measurements, signal to 004

noise ratio 50. 0.02
0

Full model has 120 x 120 ggj

elements. -
-0.06
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Example 1: Sampling Efficiency

Reference Exact Approximate
Error threshold e | - 100710210107 | 1072 | 1073
Basis vectors - 14 33 57 17 35 57
ESS/CPUtime | 0.058 2.5 2.7 2.6 15 12 8.9
Speed-up factor | 1 43 46 45 256 213 154
m Run both algorithms for 5 x 10° iterations, with e = 107,102,107,
m e is normalized by the standard derivation measurement noise.

m A reference MCMC (only based on the full model) is simulated for 5 x 10°
iterations.

Speed-up factor is estimated from CPU time per effective sample.
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Example 1: Sampling Accuracy

2nd Moments of x;

175
e . . o Monte Carlo Ei
m Statistic of interest: variance 17 e
of 1 and zs.
. . . 1.65
m Blue circle: estimator given
by each chain. 16
m Error bar: 2 s.t.d. of the 155
Monte Carlo error of the
. R E107  E10°  E10®  A107  A10?  A107
estimator, 50 reference
chains with 5 x 10° 05 2nd Moments of ry
. . o Estimated
terations.
0.4
0.3
02
0.1 ; p
R E 107 E 107 E107 A 107 A 1072 A 107
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Example 1: Accuracy of the ROM

Max ||t(z)

Expected True Error

Max True Error
10° 10°
10° "\ = 10’ .\ .
Prior } E Prior 4
]
5]
10-2 Data-driven % 10-2
p Data-driven
D
10* 10°
0 20 40 60 80 100 0 20 40 60 80 100
Number of Basis Vectors

Number of Basis Vectors

m For benchmarking, 10* snapshots from the prior to construct the ROM.

m The data-driven ROM are built with e = 1073,
m The true error for both ROMs are calculated on 10* posterior samples.

m The true error is normalized by the standard derivation of measurement noise

T. Cui Low Dimensional Structures CSIAM
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Example 1: Numerical Results

Log-posterior vs. MCMC iteration

Zoom-in of first 500 iterations

100 200 300 400 500
MCMC iteration

MCMC iteration X 10

The trace of the log-posterior against MCMC iterations. From top to bottom:
e=10"1,10"2,1073. The red and black lines indicate FOM evaluations, where red

means a rejected proposal, and black means an accepted proposal.
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Example 2: Arolla Glacier

Goal: estimating basal sliding coefficients from surface velocity measurements.

~_Ice sheet

=V - [2n(u) éu — Ip] = pg in Q ‘ Croindeg N
V.u=0 inQ ‘

ou,n=0 onl;

u-n=0 onl,

Toun +exp(z)Tu=0 onl

Ioo sheet (ref: Nature, 458, 2011)

m wu ice flow velocity, p pressure . )
p density, g gravity

m o, = —Ip+ 2n(u)é, stress tensor )
. T ) 1 unit normal vector

® &, = (Vu+ Vu') strain rate tensor

mou)=1A"" éH" effective viscosity

|

|

m 2 log basal sliding coefficient

m T = I — n ® n tangential operator
|

m & = 3tr(&7) second invariant of the
strain rate tensor

T': and T, top and base boundaries

Joint work with Petra, Peherstorfer, Ghattas, Marzouk and Willcox
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Example 2: Arolla Glacier

m Discretization system:

K(u,z)u+ B'p=—7(u,p), Bu=0,

where B is the discretization of the divergence operator.
= One dimensional model to validate our methods

100 200 300 400 500

L

L,

0 1000 2000 3000 4000 5000
X [m]

m Synthetic data and MAP estimate (used as the initial guess)

T. Cui

horizontal surface velocity [m a~']

N oW s oo
s 8 & g
S8 8 8 8

2

—truth” velocity
- - ~velocity for MAP
©_synthetic observations

oy

55
£
5
54
=
& 3
8
2
0 °ow 1=t x field
= ==MAP estimate|
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
x[m] x [m]
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Example 2: Arolla Glacier

mean and 95% credible interval

—full 12
——jointly reduced

AR

0 1000 2000 3000 4000 5000
o s horizontal [m]

T2

e

T3

basal sliding «

Full posterior: 139 dimensional parameters + 5373 dimensional states
Reduced: 50 dim. states (also need parameter reduction, not discussed)
Left: samples projected onto 5 leading parameter basis vectors

Right: estimated parameter mean and credible intervals.
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Example 3: GOMOS Remote Sensing

Signals:

satellite orbit
<

;

W0 a0 50 60
w0’

:

w0 o

=

Transmission:
)

@
=
=l
g
£
S
w

K

o
W a0 %0 60

Beer's law  Tx; = exp (‘ / > a’ias(h)/)gas(h)dh>
l

gas

m Global Ozone Monitoring using Occultation Stars (GOMOS)
m Estimate gas densities p%*°(h) from transmission spectrum T’ ;
m Forward model is a nonlinear function y = F(xz), F : R?00 — R70800

Joint work with Laine and Haario

T. Cui Low Dimensional Structures CSIAM 26/28



Example 3: GOMOS Remote Sensing

jointly reduced full posterior jointly reduced full posterior
[
8
o
o Z
8 6 4 2 0 8 -6 4 2 0 25 20 -15 -10 -25 20 -15 -10
T T T T T T T T
I I I 1 I I I I
2] I I I I I I I I
8 '§ o o o o
1 I I I I I I I
Z 8 I I I I I I I I
8l [ o o
I I I I 1 I I I
1 1 1 1 1 1 1 1
60 40 20 -60  —40 20

m Estimated gas density profiles
m Full posterior: 70800 dimensional states / data
m Reduced: 45 dim. states / data
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Discussion

= We use online adaptation to construct effective reduced order models for accel-
erating Bayesian inverse problems

= Two algorithms are introduced, the exact delayed acceptance and the approxi-
mation based solely on ROM and error indicators.

Future works:
m How to use error estimators (bounds)?

m Use other surrogate modelling tools, e.g., tensor-train, sparse grids or low-discrepan
sequences.

m Sequential inference / data-assimilation.
m Exact MCMC using the approximation (randomisation techniques)
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A 9D Test Case: Influence of Data

10 150
& 4
B g
- |
B £ 100
[} 2]
S0 E
el
7" =
£ £ 50
2 :
: - M
5
10 0
0 20 40 60 80 100 0 20 40 60 80 100
Signal to noise ratio Signal to noise ratio

= Influence of data is controlled by signal to noise ratio.
NP

. . . 0'0(:01)

m The tightness of the posterior is Ul =TOR
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A 9D Test Case: Coupling Time

e=10"" e=10"? e=10"°
0 WW
§ -2
-4
2.8
27 M
&
2.6
2.5
™
g-2
-4
0 200 400 0 1000 2000 30000 5000 10000
MCMC iterations MCMC iterations MCMC iterations

Coupling time between the MH algorithm sampling the approximate posterior and the
MH sampling the exact posterior. From left to right, the approximate posterior uses
ROM that constructed with different error threshold, e = 10~!, 1072, 1073,
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GOMOS: vs. Prior Reduction

Comparison of marginals:

KL mode 1 KL mode 2 KL mode 3 KL mode 4
0.5 0.4 0.5 4
04 03 04 3
0.3 0.3
0.2 2
0.2 0.2
0.1 01 0.1 ! S,
0 0 0 0
-10 -5 0 5 -5 0 5 -5 0 5 -4 2 2
KL mode 5 KL mode 6 KL mode 7 KL mode 8
2.5 0.4 2.5 L5
full posterior
2 Posterior-Joint s 2
— — Laplace-Joint 3§ 03 ) h
== === Prior-Joint M
15077 15 L
Laplace 02 3,
1 1
0.5
0.5 0.1 0.5
0 0 0 0
-6 2 -5 0 5 2 2 -4 2 0 2 4
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