Intrinsic subspaces of high-dimensional inverse problems and where to find them

In collaboration with Xin Tong (NUS) and Olivier Zahm (INRIA)

Tiangang Cui
Monash Univerisity
tiangang.cui@monash.edu
https://www.fastfins.org/

DTU, 22 Nov, 2022.

- Recover an unknown parameter x from the noisy observation of a forward model $G(x)$. For instance

$$
y=G(x)+\xi \quad \text { with } \quad \xi \sim \mathcal{N}\left(0, \Gamma_{\text {obs }}\right) .
$$

- The distribution of $x \mid y$ is the posterior

$$
\underbrace{\pi^{y}(x)}_{\text {posterior }}=\frac{1}{Z} \underbrace{f^{y}(x)}_{\text {likelihood }} \underbrace{\mu(x)}_{\text {prior }} \quad \text { with } \quad f^{y}(x)=\mathbb{P}(y \mid x)
$$

- Draw samples $x \sim \pi^{y}$
- Find the MAP estimate $\arg \max _{x} \pi^{y}(x)$
- Compute an expectation over posterior $\int h(x) \mathrm{d} \pi^{y}(x)$

Curse of dimensionality

$$
x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}
$$

Standard algorithms suffer when $d \gg 1$ (slow convergence, complexity blows up...)

In many situations, the data are informative only on a low-dimensional subspace

The posterior distribution is *close* to

$$
\tilde{\pi}^{y}(x) \propto \tilde{f}^{y}\left(U_{r}^{T} x\right) \mu(x)
$$

for some approximate likelihood $\tilde{f}^{y}: \mathbb{R}^{r} \rightarrow \mathbb{R}_{+}$and some matrix $U_{r} \in \mathbb{R}^{d \times r}$ with rank r :

$$
\mathbb{R}^{d}=\underbrace{\operatorname{Im}\left(U_{r}\right)}_{\pi^{y} \neq \mu} \oplus \underbrace{\operatorname{Ker}\left(U_{r}^{T}\right)}_{\pi^{y} \approx \mu}
$$

$$
x=\underbrace{U_{r} x_{r}}_{\in \operatorname{lm}\left(U_{r}\right)}+\underbrace{U_{\perp} x_{\perp}}_{\in \operatorname{Ker}\left(U_{r}^{T}\right)}
$$

Then
$\tilde{\pi}^{y}(x)=\underbrace{\left(\frac{1}{\tilde{Z}} \tilde{f}^{y}\left(x_{r}\right) \mu\left(x_{r}\right)\right)}_{\tilde{\pi}_{r}\left(x_{r}\right)} \mu\left(x_{\perp} \mid x_{r}\right)$

$$
x=\underbrace{U_{r} x_{r}}_{\in \operatorname{lm}\left(U_{r}\right)}+\underbrace{U_{\perp} x_{\perp}}_{\in \operatorname{Ker}\left(U_{r}^{T}\right)}
$$

Then

$$
\tilde{\pi}^{y}(x)=\underbrace{\left(\frac{1}{\tilde{Z}} \tilde{f}^{y}\left(x_{r}\right) \mu\left(x_{r}\right)\right)}_{\tilde{\pi}_{r}\left(x_{r}\right)} \mu\left(x_{\perp} \mid x_{r}\right)
$$

- Exploring $\tilde{\pi}^{y}$

1. Subspace MCMC / transport maps to get samples $x_{r}^{(i)} \sim \tilde{\pi}_{r}^{y}\left(x_{r}\right)$
2. Draw samples from the conditional prior $x_{\perp}^{(i)} \sim \mu\left(x_{\perp} \mid x_{r}^{(i)}\right)$
3. Assemble $x^{(i)}=U_{r} x_{r}^{(i)}+U_{\perp} x_{\perp}^{(i)} \sim \tilde{\pi}^{y}(x)$

$$
x=\underbrace{U_{r} x_{r}}_{\in \operatorname{lm}\left(U_{r}\right)}+\underbrace{U_{\perp} x_{\perp}}_{\in \operatorname{Ker}\left(U_{r}^{T}\right)}
$$

- Exploring $\tilde{\pi}^{y}$

1. Subspace MCMC / transport maps to get samples $x_{r}^{(i)} \sim \tilde{\pi}_{r}^{y}\left(x_{r}\right)$
2. Draw samples from the conditional prior $x_{\perp}^{(i)} \sim \mu\left(x_{\perp} \mid x_{r}^{(i)}\right)$
3. Assemble $x^{(i)}=U_{r} x_{r}^{(i)}+U_{\perp} x_{\perp}^{(i)} \sim \tilde{\pi}^{y}(x)$

$$
x=\underbrace{U_{r} x_{r}}_{\in \operatorname{lm}\left(U_{r}\right)}+\underbrace{U_{\perp} x_{\perp}}_{\in \operatorname{Ker}\left(U_{r}^{T}\right)}
$$

Then

$$
\tilde{\pi}^{y}(x)=\underbrace{\left(\frac{1}{\tilde{Z}} \tilde{f}^{y}\left(x_{r}\right) \mu\left(x_{r}\right)\right)}_{\tilde{\pi}_{r}\left(x_{r}\right)} \mu\left(x_{\perp} \mid x_{r}\right)
$$

- Exploring $\tilde{\pi}^{y}$

1. Subspace MCMC / transport maps to get samples $x_{r}^{(i)} \sim \tilde{\pi}_{r}^{y}\left(x_{r}\right)$
2. Draw samples from the conditional prior $x_{\perp}^{(i)} \sim \mu\left(x_{\perp} \mid x_{r}^{(i)}\right)$
3. Assemble $x^{(i)}=U_{r} x_{r}^{(i)}+U_{\perp} x_{\perp}^{(i)} \sim \tilde{\pi}^{y}(x)$

$$
x=\underbrace{U_{r} x_{r}}_{\in \operatorname{lm}\left(U_{r}\right)}+\underbrace{U_{\perp} x_{\perp}}_{\in \operatorname{Ker}\left(U_{r}^{T}\right)}
$$

Then

$$
\tilde{\pi}^{y}(x)=\underbrace{\left(\frac{1}{\tilde{Z}} \tilde{f}^{y}\left(x_{r}\right) \mu\left(x_{r}\right)\right)}_{\tilde{\pi}_{r}\left(x_{r}\right)} \mu\left(x_{\perp} \mid x_{r}\right)
$$

- Exploring $\tilde{\pi}^{y}$

1. Subspace MCMC / transport maps to get samples $x_{r}^{(i)} \sim \tilde{\pi}_{r}^{y}\left(x_{r}\right)$
2. Draw samples from the conditional prior $x_{\perp}^{(i)} \sim \mu\left(x_{\perp} \mid x_{r}^{(i)}\right)$
3. Assemble $x^{(i)}=U_{r} x_{r}^{(i)}+U_{\perp} x_{\perp}^{(i)} \sim \tilde{\pi}^{y}(x)$

- Get samples from the exact posterior π^{y} by correcting $x^{(i)}$ via importance weights or a Metropolis scheme 屓[Cui \& Zahm 2021], 苞[Cui, Law \& Marzouk 2016],...
 Dolgov 2020] to replace MCMC in $\operatorname{Im}\left(U_{r}\right)$

Objective of the talk

Controlled approximation problem

Given $\varepsilon>0$, build an approximation of π^{y} under the form of

$$
\tilde{\pi}^{y}(x) \propto \tilde{f}^{y}\left(U_{r}^{T} x\right) \mu(x) \quad \text { with }\left\{\begin{array}{l}
\tilde{f}^{y}: \mathbb{R}^{r} \rightarrow \mathbb{R}_{\geq 0} \\
U_{r} \in \mathbb{R}^{d \times r}
\end{array}\right.
$$

with $r=r(\varepsilon) \ll d$ such that

$$
\text { Variational inference } D_{\mathrm{KL}}\left(\pi^{\nu} \| \pi^{\nu}\right) \leq \varepsilon
$$

$$
\text { Function approximation } D_{\mathrm{H}}\left(\pi^{y} \| \tilde{\pi}^{y}\right) \leq \varepsilon
$$

Road map:

1. Constructing $U_{r}=U_{r}(y)$ using gradients of likelihood and \tilde{f}^{y}
2. Data-free dimension reduction $U_{r}=$ DVK
3. A sampling strategy
4. Conclusion

Constructing $U_{r}=U_{r}(y)$ using gradients of likelihood and \tilde{f}^{y}

$$
\tilde{\pi}^{y}(x) \propto \tilde{f}^{y}\left(U_{r}^{T} x\right) \mu(x)
$$

Optimal approximation given U_{r} 莑[Banerjee, Guo \& Wang 2005]

Given U_{r}, the function

$$
\tilde{f}^{y}\left(x_{r}\right) \equiv f_{r}^{y}\left(x_{r}\right)=\mathbb{E}_{X \sim \mu}\left(f^{y}(X) \mid U_{r}^{T} X=x_{r}\right)
$$

minimizes $D_{\mathrm{KL}}\left(\pi^{y} \| \tilde{\pi}^{y}\right)$. Then, $\tilde{\pi}^{y}(x)$ writes

$$
\tilde{\pi}_{f}^{y}(x)=\pi_{f}^{y}\left(x_{r}\right) \mu\left(x_{\perp} \mid x_{r}\right), \quad \pi_{f}^{y}\left(x_{r}\right)=\frac{1}{Z} f_{r}^{y}\left(x_{r}\right) \mu\left(x_{r}\right)
$$

$$
\tilde{\pi}^{y}(x) \propto \tilde{f}^{y}\left(U_{r}^{T} x\right) \mu(x)
$$

Given U_{r}, the function

$$
\tilde{f}^{y}\left(x_{r}\right) \equiv f_{r}^{y}\left(x_{r}\right)=\mathbb{E}_{X \sim \mu}\left(f^{y}(X) \mid U_{r}^{T} X=x_{r}\right)
$$

minimizes $D_{\mathrm{KL}}\left(\pi^{y} \| \tilde{\pi}^{y}\right)$. Then, $\tilde{\pi}^{y}(x)$ writes

$$
\tilde{\pi}_{f}^{y}(x)=\pi_{f}^{y}\left(x_{r}\right) \mu\left(x_{\perp} \mid x_{r}\right), \quad \pi_{f}^{y}\left(x_{r}\right)=\frac{1}{Z} f_{r}^{y}\left(x_{r}\right) \mu\left(x_{r}\right)
$$

Build U_{r} by minimizing a certified error bound [Zahm et al. 2022]
Assume $\mu=\mathcal{N}\left(m_{\mathrm{pr}}, \Sigma_{\mathrm{pr}}\right)$ and let \tilde{f}^{y} be as above. By logarithmic Sobolev inequalities ${ }^{\text {Eloss }}$ [Gross 1975] we have

$$
\begin{aligned}
D_{\mathrm{KL}}\left(\pi^{y} \| \tilde{\pi}_{f}^{y}\right) & \leq \frac{\kappa}{2} \int\left\|\left(I_{d}-U_{r} U_{r}^{T}\right) \nabla \log f^{y}\right\|_{\Sigma_{\mathrm{pr}}}^{2} \mathrm{~d} \pi^{y} \\
& =\frac{\kappa}{2} \operatorname{tr}[\Sigma_{r}\left(I_{d}-U_{r} U_{r}^{T}\right) \underbrace{\left(\int\left(\nabla \log f^{y}\right)\left(\nabla \log f^{y}\right)^{T} \mathrm{~d} \pi^{y}\right)}_{\mathbf{H}(y)}\left(I_{d}-U_{r} U_{r}^{T}\right)]
\end{aligned}
$$

Principal Component Analysis of $\nabla \log f^{y}$

Bound on $D_{\text {KL }}$ relies on the Gram matrix

$$
\mathbf{H}(y)=\int\left(\nabla \log f^{y}\right)\left(\nabla \log f^{y}\right)^{T} \mathrm{~d} \pi^{y}
$$

Find U_{r} that minimizes the truncation residual

$$
\mathcal{R}\left(H(y), U_{r}\right)=\operatorname{tr}\left[\Sigma_{r}\left(I_{d}-U_{r} U_{r}^{T}\right) \mathbf{H}(y)\left(I_{d}-U_{r} U_{r}^{T}\right)\right]
$$

1. Solve the generalized eigenvalue problem $\mathbf{H}(y) u_{i}^{y}=\lambda_{i}^{y} \Sigma_{\mathrm{pr}}^{-1} u_{i}^{y}$
2. Assemble $U_{r}=\left[u_{1}^{y}, \ldots, u_{r}^{y}\right] \in \mathbb{R}^{d \times r}$

In the end we get

$$
D_{\mathrm{KL}}\left(\pi^{y} \| \tilde{\pi}_{f}^{y}\right) \leq \frac{\kappa}{2}\left(\lambda_{r+1}^{y}+\cdots+\lambda_{d}^{y}\right)
$$

Principal Component Analysis of $\nabla \log f^{y}$

Bound on $D_{\text {KL }}$ relies on the Gram matrix

$$
\mathbf{H}(y)=\int\left(\nabla \log f^{y}\right)\left(\nabla \log f^{y}\right)^{T} \mathrm{~d} \pi^{y}
$$

Find U_{r} that minimizes the truncation residual

$$
\mathcal{R}\left(H(y), U_{r}\right)=\operatorname{tr}\left[\Sigma_{r}\left(I_{d}-U_{r} U_{r}^{T}\right) \mathbf{H}(y)\left(I_{d}-U_{r} U_{r}^{T}\right)\right]
$$

1. Solve the generalized eigenvalue problem $\mathbf{H}(y) u_{i}^{y}=\lambda_{i}^{y} \Sigma_{\mathrm{pr}}^{-1} u_{i}^{y}$
2. Assemble $U_{r}=\left[u_{1}^{y}, \ldots, u_{r}^{y}\right] \in \mathbb{R}^{d \times r}$

In the end we get

$$
D_{K L}\left(\pi^{y} \| \tilde{\pi}_{f}^{y}\right) \leq \frac{\kappa}{2}\left(\lambda_{r+1}^{y}+\cdots+\lambda_{d}^{y}\right)
$$

Alternative: coordinate selection $U_{r} x=x_{\tau}$ for some $\tau \subset\{1, \ldots, d\}$

$$
D_{\mathrm{KL}}\left(\pi^{y} \| \tilde{\pi}_{f}^{y}\right) \leq \frac{\kappa}{2} \sum_{i \notin \tau} \mathbf{H}(y)_{i i}\left(\Sigma_{\mathrm{pr}}\right)_{i i}
$$

Benchmark GOMOS: atmospheric remote sensing (eg E[Haario et al. 2004])

- Estimate gas densities $x=\rho^{\text {gas }}(z)$ from transmission spectra $y_{\omega}(z)$
- Beer's law:

$$
y_{\omega}(z)=\exp \left(-\int_{\text {light path }} \sum_{\text {gas }} \alpha_{\omega}^{\text {gas }}(z(\zeta)) \rho^{\text {gas }}(z(\zeta)) \mathrm{d} \zeta\right)+\xi
$$

- Log-normal prior $\mathcal{N}\left(\mu_{\mathrm{pr}}, \Sigma_{\mathrm{pr}}\right)$ with squared exponential kernel covariance
- After discretization of the atmosphere, $\operatorname{dim}(x)=200$.

$$
D_{\mathrm{KL}}\left(\pi^{y} \| \tilde{\pi}_{f}^{y}\right)=\text { function }(r)
$$

Results 管[Zahm, Cui, Law, Spantini \& Marzouk 2022]

$$
\tilde{\pi}^{y}(x) \propto \tilde{f}^{y}\left(U_{r}^{T} x\right) \mu(x)
$$

Optimal approximation given U_{r} 畐[Cui, Dolgov \& Zahm, 2022]

Given U_{r}, the function

$$
\tilde{f}^{y}\left(x_{r}\right) \equiv g_{r}^{y}\left(x_{r}\right)^{2}, \quad g_{r}^{y}\left(x_{r}\right)=\mathbb{E}_{X \sim \mu}\left(\sqrt{f^{y}}(X) \mid U_{r}^{T} X=x_{r}\right)
$$

minimizes $D_{\mathrm{H}}\left(\pi^{y}| | \tilde{\pi}^{y}\right)$. Then, $\tilde{\pi}^{y}(x)$ writes

$$
\tilde{\pi}_{g}^{y}(x)=\pi_{g}^{y}\left(x_{r}\right) \mu\left(x_{\perp} \mid x_{r}\right), \quad \pi_{g}^{y}\left(x_{r}\right)=\frac{1}{Z_{g}} g_{r}^{y}\left(x_{r}\right)^{2} \mu\left(x_{r}\right)
$$

Some useful bounds [Cui \& Tong 2022]

Assume $\mu=\mathcal{N}\left(m_{\mathrm{pr}}, \Sigma_{\mathrm{pr}}\right)$. We have

$$
\begin{aligned}
& D_{\mathrm{H}}^{2}\left(\pi^{y}| | \tilde{\pi}_{g}^{y}\right) \leq \frac{1}{Z} \int \operatorname{var}_{\mu}\left[\sqrt{f^{y}}(X) \mid U_{r}^{T} X=x_{r}\right] \mathrm{d} \mu\left(x_{r}\right) \\
& D_{\mathrm{H}}^{2}\left(\pi^{y}| | \tilde{\pi}_{f}^{y}\right) \leq \frac{1}{Z} \int \operatorname{var}_{\mu}\left[\sqrt{f^{y}}(X) \mid U_{r}^{T} X=x_{r}\right] \mathrm{d} \mu\left(x_{r}\right) \\
& D_{\mathrm{H}}\left(\pi^{y} \| \tilde{\pi}_{g}^{y}\right) \leq D_{\mathrm{H}}\left(\pi^{y}| | \tilde{\pi}_{f}^{y}\right)
\end{aligned}
$$

Bound on conditional variance [Cui \& Tong 2022]

By Poincaré inequality, we have

$$
\frac{1}{Z} \int \operatorname{var}_{\mu}\left[\sqrt{f^{y}}(X) \mid U_{r}^{T} X=x_{r}\right] \mathrm{d} x_{r} \leq \frac{C}{4} \int\left\|\left(I_{d}-U_{r} U_{r}^{T}\right) \nabla \log f^{y}\right\|_{\Sigma_{\mathrm{pr}}}^{2} \mathrm{~d} \pi^{y}
$$

Leads to a similar upper bound on Hellinger as that for the KL divergence.

$$
D_{\mathrm{H}}^{2}\left(\pi^{y} \| \tilde{\pi}_{\{f, g\}}^{y}\right) \leq \frac{C}{4} \operatorname{tr}\left[\Sigma_{r}\left(I_{d}-U_{r} U_{r}^{T}\right) \mathbf{H}(y)\left(I_{d}-U_{r} U_{r}^{T}\right)\right]
$$

Principal Component Analysis of $\nabla \log f^{y}$

Similar to the KL case, given the same Gram matrix

$$
\mathbf{H}(y)=\int\left(\nabla \log f^{y}\right)\left(\nabla \log f^{y}\right)^{T} \mathrm{~d} \pi^{y}
$$

Leading eigenvectors of $\mathbf{H}(y) u_{i}^{y}=\lambda_{i}^{y} \Sigma_{p r}^{-1} u_{i}^{y}$ defines $U_{r}=\left[u_{1}^{y}, \ldots, u_{r}^{y}\right]$ that minimizes the truncation residual

$$
\mathcal{R}\left(H(y), U_{r}\right)=\operatorname{tr}\left[\Sigma_{r}\left(I_{d}-U_{r} U_{r}^{T}\right) \mathbf{H}(y)\left(I_{d}-U_{r} U_{r}^{T}\right)\right]
$$

In the end we get

$$
D_{\mathrm{H}}\left(\pi^{y} \| \tilde{\pi}_{\{f, g\}}^{y}\right) \leq \frac{C}{2} \sqrt{\lambda_{r+1}^{y}+\cdots+\lambda_{d}^{y}}
$$

Alternative: coordinate selection $U_{r} x=x_{\tau}$ for some $\tau \subset\{1, \ldots, d\}$

$$
D_{\mathrm{H}}\left(\pi^{y}| | \tilde{\pi}_{\{f, g\}}^{y}\right) \leq \frac{C}{2}\left(\sum_{i \notin \tau} \mathbf{H}(y)_{i i}\left(\Sigma_{\mathrm{pr}}\right)_{i i}\right)^{\frac{1}{2}}
$$

Given U_{r} built from the Gram matrix $\mathbf{H}(y)$:

Conditional expectations

$$
\begin{aligned}
& f_{r}^{y}\left(x_{r}\right)=\mathbb{E}_{X \sim \mu}\left(f^{y}(X) \mid U_{r}^{T} X=x_{r}\right) \\
& g_{r}^{y}\left(x_{r}\right)=\mathbb{E}_{X \sim \mu}\left(\sqrt{f^{y}}(X) \mid U_{r}^{T} X=x_{r}\right)
\end{aligned}
$$

Optimal approximations

$$
\begin{aligned}
\mathrm{KL}: & \tilde{\pi}_{f}^{y}(x)=\frac{1}{Z} f_{r}^{y}\left(x_{r}\right) \mu\left(x_{r}\right) \mu\left(x_{\perp} \mid x_{r}\right) \\
\text { Hellinger: } & \tilde{\pi}_{g}^{y}(x)=\frac{1}{Z_{g}} g_{r}^{y}\left(x_{r}\right)^{2} \mu\left(x_{r}\right) \mu\left(x_{\perp} \mid x_{r}\right)
\end{aligned}
$$

- How to approximate the conditional expectation in $f_{r}^{y}\left(x_{r}\right)$ and $g_{r}^{y}\left(x_{r}\right)$?
- How to approximate the Gram matrix $\mathbf{H}(y)$ and the basis U_{r} ?
- What are the approximation errors?

Monte Carlo approximation of conditional expectations

Given conditional prior samples $x_{\perp}^{(j)} \sim \mu\left(x_{\perp} \mid x_{r}\right), j=1, \ldots, N$, we have

$$
\begin{aligned}
& f_{r}^{y}\left(x_{r}\right)=\mathbb{E}_{X \sim \mu}\left(f^{y}(X) \mid U_{r}^{T} X=x_{r}\right) \approx \frac{1}{N} \sum_{j=1}^{N} f^{y}\left(U_{r} x_{r}+U_{\perp} x_{\perp}^{(j)}\right) \equiv f_{N}^{y}\left(x_{r}\right) \\
& g_{r}^{y}\left(x_{r}\right)=\mathbb{E}_{X \sim \mu}\left(\sqrt{f^{y}}(X) \mid U_{r}^{T} X=x_{r}\right) \approx \frac{1}{N} \sum_{j=1}^{N} \sqrt{f^{y}}\left(U_{r} x_{r}+U_{\perp} x_{\perp}^{(j)}\right) \equiv g_{N}^{y}\left(x_{r}\right)
\end{aligned}
$$

Monte Carlo estimates of the optimal approximations

$$
\begin{aligned}
& \tilde{\pi}_{f}^{y}(x) \approx \pi_{f, N}^{y}(x) \propto f_{N}^{y}\left(x_{r}\right) \mu\left(x_{r}\right) \mu\left(x_{\perp} \mid x_{r}\right) \\
& \tilde{\pi}_{g}^{y}(x) \approx \pi_{g, N}^{y}(x) \propto g_{N}^{y}\left(x_{r}\right)^{2} \mu\left(x_{r}\right) \mu\left(x_{\perp} \mid x_{r}\right)
\end{aligned}
$$

Bound the sampling error [Cui \& Tong 2022]

$$
\begin{aligned}
& \mathbb{E}\left[D_{\mathrm{H}}\left(\pi_{f}^{y} \| \pi_{f, N}^{y}\right)\right]=\mathcal{O}\left(\frac{1}{\sqrt{N}} \sqrt{\mathcal{R}\left(H(y), U_{r}\right)}\right) \\
& \mathbb{E}\left[D_{\mathrm{H}}\left(\pi_{g}^{y} \| \pi_{g, N}^{y}\right)\right]=\mathcal{O}\left(\frac{1}{\sqrt{N}} \sqrt{\mathcal{R}\left(H(y), U_{r}\right)}\right)
\end{aligned}
$$

- N can be small for a small truncation residual $\mathcal{R}\left(H(y), U_{r}\right)$
- $\pi_{g, N}^{y}$ has almost the same accuracy (in D_{H}) as $\pi_{f, N}^{y}$ in practice
- Sharp estimate on D_{KL} is still not available

Monte Carlo approximation of the Gram matrix

Sample-based estimation:

1. Monte Carlo approximation

$$
\hat{\mathbf{H}}(y)=\frac{1}{M} \sum_{i=1}^{M}\left(\nabla \log f^{y}\left(X^{(i)}\right)\right)\left(\nabla \log f^{y}\left(X^{(i)}\right)\right)^{T} \frac{\pi^{y}\left(\left(X^{(i)}\right)\right)}{\tilde{\pi}^{y}\left(\left(X^{(i)}\right)\right)}, \quad X^{(i)} \sim \tilde{\pi}^{y}
$$

Iterative adaptation: $\pi_{\mathrm{pr}} \rightarrow H^{\left(\pi_{\mathrm{pr}}\right)} \rightarrow \tilde{\pi}^{y} \rightarrow H^{\left(\tilde{\pi}^{y}\right)} \rightarrow \ldots$
2. Solve the generalized eigenvalue problem $\hat{\mathbf{H}}(y) u_{i}^{y}=\hat{\lambda}_{i}^{y} \Sigma_{\mathrm{pr}}^{-1} \hat{u}_{i}^{y}$
3. Assemble $\hat{U}_{r}=\left[\hat{u}_{1}^{y}, \ldots, \hat{u}_{r}^{y}\right] \in \mathbb{R}^{d \times r}$

Given a (random) \hat{U}_{r}, what is $\mathcal{R}\left(H(y), \hat{U}_{r}\right)$? [Cui \& Tong 2022]

$$
\mathbb{E}\left[\mathcal{R}\left(H(y), \hat{U}_{r}\right)\right] \leq \sum_{i=r+1}^{d} \hat{\lambda}_{i}^{y}+\frac{\sqrt{r \operatorname{var(H}(y))}}{\sqrt{M}}
$$

- Eigenvalues $\hat{\lambda}_{i}^{y}$, rank r, and sample size M are known
- $\operatorname{var}(\mathbf{H}(y))$ is a constant (unknown)
- For linear inverse problems, the bound is independent of the dimension d
- Does not relies on the spectral gap assumption of $\mathbf{H}(y)$, which is a typical assumption but often does not hold in practice

A numerical example: elliptic PDE

$$
-\nabla \cdot(\kappa(s) \nabla u(s))=f(s), \quad s \in[0,1]^{2}
$$

- Boundary conditions: $\left.u\right|_{s_{1}=0}=1$ and $\left.u\right|_{s_{1}=1}=0$, no flux on others
- Parameter: $x(s)=\log \kappa(s)$
- Data: $y=\left(u\left(s_{1}\right), \ldots, u\left(s_{m}\right)\right)+\mathcal{N}\left(0, \sigma^{2} I\right) \quad$ (Gaussian likelihood)
- Gaussian process prior: $K\left(s, s^{\prime}\right)=\exp \left(-\frac{1}{\ell}\left\|s-s^{\prime}\right\|\right)$

Spectral gap of $\mathbf{H}(y)$ decays with r

$$
\sigma=0.034 \quad \sigma=0.017 \quad \sigma=0.0085
$$

- SMC adaptive estimation of $\mathbf{H}(y)$ and \hat{U}_{r}, with different sample size
- Using $N=4$ for conditional expectations
- Negligible variances

$$
\mathcal{R}\left(H, \hat{U}_{r}\right), \mathrm{SMC} \quad D_{\mathrm{H}}^{2}\left(\pi \| \pi_{f}^{N}\right) \quad D_{\mathrm{H}}^{2}\left(\pi \| \pi_{g}^{N}\right)
$$

Data-free dimension reduction $U_{r}=$ U(X)

Recall that, in the Bayesian perspective, the observed data y is a realization of a random variable

$$
Y \sim \pi_{\text {data }}
$$

Objective

Find a $U_{r}=$ Unf 4 such that

$$
\begin{equation*}
D_{(\cdot)}\left(\pi^{Y} \| \tilde{\pi}_{f}^{Y}\right) \leq \text { tol } \tag{1}
\end{equation*}
$$

in high probability (w.r.t. Y). Here $(\cdot)=\{\mathrm{KL}, \mathrm{H}\}$.

By Markov inequality,

$$
\mathbb{E}\left(D_{(\cdot)}\left(\pi^{Y} \| \tilde{\pi}_{f}^{Y}\right)\right) \leq \varepsilon
$$

is sufficient to ensure (1) with probability greater than $1-\varepsilon /$ tol.

1. Compute
$\stackrel{(1)}{\text { D }} \quad \mathbf{H}=\mathbb{E}(\mathbf{H}(Y))$
2. Solve the generalized eigenvalue problem $\mathbf{H} u_{i}=\lambda_{i} \Sigma_{\mathrm{pr}} u_{i}$ and let

$$
U_{r}=\left[u_{1}, \ldots, u_{r}\right] \in \mathbb{R}^{d \times r}
$$

3. Receive a realization y of Y,
4. Compute the optimal reduced likelihood $f_{r}^{y}=\mathbb{E}_{X \sim \mu}\left(f^{y}(X) \mid U_{r}^{T} X=x_{r}\right)$
5. Assemble the posterior approximation $\tilde{\pi}_{f}^{y} \propto f_{r}^{y}\left(U_{r}^{T} x\right) \mu(x)$

Proposition

Assume $\mu=\mathcal{N}\left(m_{\mathrm{pr}}, \Sigma_{\mathrm{pr}}\right)$. The above procedure yields

$$
\mathbb{E}\left(D_{\mathrm{KL}}\left(\pi^{\curlyvee} \| \tilde{\pi}_{f}^{\curlyvee}\right)\right) \leq \frac{1}{2}\left(\lambda_{r+1}+\cdots+\lambda_{d}\right)
$$

Similar results can be obtained for D_{H} by convexity.

Proposition ${ }^{\text {E }}$ [Cui \& Zahm 2021]

$$
\mathbf{H}=\int \mathcal{I}(x) \mathrm{d} \mu(x)
$$

where $\mathcal{I}(x)$ is the Fisher information matrix of the likelihood $f^{y}(x) \propto \pi(y \mid x)$ defined by

$$
\mathcal{I}(x)=\int \nabla \log f^{y}(x) \nabla \log f^{y}(x)^{T} \pi(y \mid x) \mathrm{d} y
$$

Explicit expression on the Fisher information matrix when:

- Gaussian likelihood: $f^{y}(x)=\exp \left(-\frac{1}{2}\|G(x)-y\|_{\Gamma_{\text {obs }}^{-1}}^{2}\right)$

$$
H=\int \nabla G(x)^{T} \Gamma_{\text {obs }}^{-1} \nabla G(x)^{T} \mathrm{~d} \mu(x)
$$

- Poisson likelihood: $f^{y}(x)=\prod_{i=1}^{m} \frac{G_{i}(x)^{y_{i}} \exp \left(-G_{i}(x)\right)}{y_{i}!}$

$$
H=\int \nabla G(x)^{T} \operatorname{diag}\left(G_{1}(x), \ldots, G_{m}(x)\right)^{-1} \nabla G(x)^{T} \mathrm{~d} \mu(x)
$$

$$
-\nabla \cdot(\kappa(s) \nabla u(s))=f(s), \quad s \in[0,1]^{2}
$$

- Boundary conditions: $\left.u\right|_{s_{1}=0}=1$ and $\left.u\right|_{s_{1}=1}=0$, no flux on others
- Parameter: $x(s)=\log \kappa(s)$
- Data: $y=\left(u\left(s_{1}\right), \ldots, u\left(s_{m}\right)\right)+\mathcal{N}\left(0, \sigma^{2} \mathbf{I}\right) \quad$ (Gaussian likelihood)
- Gaussian prior: $-\Delta x+\gamma x=\mathcal{W}$ with $\mathcal{W}=$ white noise and $\gamma=10$

$$
D_{\mathrm{KL}}\left(\pi^{Y^{(i)}} \| \tilde{\pi}_{f}^{Y^{(i)}}\right)=\text { function }(r)
$$

- data-free: U_{r} computed via $\mathbf{H}=\mathbb{E}(\mathbf{H}(Y))$

$$
D_{\mathrm{KL}}\left(\pi^{Y^{(i)}} \| \tilde{\pi}_{f}^{Y^{(i)}}\right)=\text { function }(r)
$$

- data-free: U_{r} computed via $\mathbf{H}=\mathbb{E}(\mathbf{H}(Y))$
- data set 1: $U_{r}\left(Y^{(1)}\right)$ computed via $\mathbf{H}\left(Y^{(1)}\right)$

$$
D_{\mathrm{KL}}\left(\pi^{Y^{(i)}} \| \tilde{\pi}_{f}^{Y^{(i)}}\right)=\text { function }(r)
$$

- data-free: U_{r} computed via $\mathbf{H}=\mathbb{E}(\mathbf{H}(Y))$
- data set 1: $U_{r}\left(Y^{(1)}\right)$ computed via $\mathbf{H}\left(Y^{(1)}\right)$
- data set 2: $U_{r}\left(Y^{(2)}\right)$ computed via $\mathbf{H}\left(Y^{(2)}\right)$

$$
D_{\mathrm{KL}}\left(\pi^{Y^{(i)}} \| \tilde{\pi}_{f}^{Y^{(i)}}\right)=\text { function }(r)
$$

- data-free: U_{r} computed via $\mathbf{H}=\mathbb{E}(\mathbf{H}(Y))$
- data set 1: $U_{r}\left(Y^{(1)}\right)$ computed via $\mathbf{H}\left(Y^{(1)}\right)$
- data set 2: $U_{r}\left(Y^{(2)}\right)$ computed via $\mathbf{H}\left(Y^{(2)}\right)$
- data set 3: $U_{r}\left(Y^{(3)}\right)$ computed via $\mathbf{H}\left(Y^{(3)}\right)$

A sampling strategy

Sample from the approximate posterior

For a given U_{r}, consider the marginal posterior

$$
\pi_{r}^{y}\left(x_{r}\right)=\frac{1}{Z} \underbrace{\left(\int f^{y}\left(U_{r} x_{r}+U_{\perp} x_{\perp}\right) \mu\left(x_{\perp} \mid x_{r}\right) \mathrm{d} x_{\perp}\right)}_{f_{r}^{y}\left(x_{r}\right)=\mathbb{E}_{X \sim \mu}\left(f^{y}(X) \mid U_{r}^{T} X=x_{r}\right)} \mu\left(x_{r}\right)
$$

where f_{r}^{y} is the optimal likelihood approximation in KL
Apply Monte Carlo approximation

$$
f_{r}^{y}\left(x_{r}\right) \approx f_{N}^{y}\left(x_{r}\right)=\frac{1}{N} \sum_{j=1}^{N} f^{y}\left(U_{r} x_{r}+U_{\perp} x_{\perp}^{(j)}\right), \quad x_{\perp}^{(j)} \sim \mu\left(x_{\perp} \mid x_{r}\right)
$$

Leads to the approximate posterior

$$
\tilde{\pi}^{y}(x) \propto \underbrace{f_{N}^{y}\left(x_{r}\right) \mu\left(x_{r}\right)}_{\pi_{N}^{y}\left(x_{r}\right)} \mu\left(x_{\perp} \mid x_{r}\right)
$$

Sample from the approximate posterior

For a given U_{r}, consider the marginal posterior

$$
\pi_{r}^{y}\left(x_{r}\right)=\frac{1}{Z} \underbrace{\left(\int f^{y}\left(U_{r} x_{r}+U_{\perp} x_{\perp}\right) \mu\left(x_{\perp} \mid x_{r}\right) \mathrm{d} x_{\perp}\right)}_{f_{r}^{y}\left(x_{r}\right)=\mathbb{E}_{X \sim \mu}\left(f^{y}(X) \mid U_{r}^{T} X=x_{r}\right)} \mu\left(x_{r}\right)
$$

where f_{r}^{y} is the optimal likelihood approximation in KL
Apply Monte Carlo approximation

$$
f_{r}^{y}\left(x_{r}\right) \approx f_{N}^{y}\left(x_{r}\right)=\frac{1}{N} \sum_{j=1}^{N} f^{y}\left(U_{r} x_{r}+U_{\perp} x_{\perp}^{(j)}\right), \quad x_{\perp}^{(j)} \sim \mu\left(x_{\perp} \mid x_{r}\right)
$$

Leads to the approximate posterior

$$
\tilde{\pi}^{y}(x) \propto \underbrace{f_{N}^{y}\left(x_{r}\right) \mu\left(x_{r}\right)}_{\pi_{N}^{y}\left(x_{r}\right)} \mu\left(x_{\perp} \mid x_{r}\right)
$$

1. Approximate marginal $x_{r}^{(i)} \sim \pi_{N}^{y}\left(x_{r}\right)$
2. Conditional prior $x_{\perp}^{(i)} \sim \mu\left(x_{\perp} \mid x_{r}^{(i)}\right)$
3. Assemble $U_{r} x_{r}^{(i)}+U_{\perp} x_{\perp}^{(i)} \sim \tilde{\pi}^{y}(x)$

Sample from the appreximate exact posterior

For a given U_{r}, consider the marginal posterior

$$
\pi_{r}^{y}\left(x_{r}\right)=\frac{1}{Z} \underbrace{\left(\int f^{y}\left(U_{r} x_{r}+U_{\perp} x_{\perp}\right) \mu\left(x_{\perp} \mid x_{r}\right) \mathrm{d} x_{\perp}\right)}_{f_{r}^{y}\left(x_{r}\right)=\mathbb{E}_{X \sim \mu}\left(f^{y}(X) \mid U_{r}^{T} X=x_{r}\right)} \mu\left(x_{r}\right)
$$

where f_{r}^{y} is the optimal likelihood approximation in KL
Apply Monte Carlo approximation

$$
f_{r}^{y}\left(x_{r}\right) \approx f_{N}^{y}\left(x_{r}\right)=\frac{1}{N} \sum_{j=1}^{N} f^{y}\left(U_{r} x_{r}+U_{\perp} x_{\perp}^{(j)}\right), \quad x_{\perp}^{(j)} \sim \mu\left(x_{\perp} \mid x_{r}\right)
$$

Leads to the approximate posterior

$$
\tilde{\pi}^{y}(x) \propto \underbrace{f_{N}^{y}\left(x_{r}\right) \mu\left(x_{r}\right)}_{\pi_{N}^{y}\left(x_{r}\right)} \mu\left(x_{\perp} \mid x_{r}\right)
$$

1. Approximate marginal $x_{r}^{(i)} \sim \pi_{r}^{y}\left(x_{r}\right)$
2. Conditional prior $x_{\perp}^{(i)} \sim \mu\left(x_{\perp} \mid x_{r}^{(i)}\right)$
3. Assemble $U_{r} x_{r}^{(i)}+U_{\perp} x_{\perp}^{(i)} \sim \pi^{y}(x)$

Pseudo-Marginal MCMC

$$
\pi_{r}^{y}\left(x_{r}\right) \approx \pi_{N}^{y}\left(x_{r}\right)=\frac{\mu\left(x_{r}\right)}{N} \sum_{i=1}^{N} f^{y}\left(U_{r} x_{r}+U_{\perp} x_{\perp}^{(j)}\right), \quad x_{\perp}^{(j)} \sim \mu\left(x_{\perp} \mid x_{r}\right)
$$

- Low-variance estimator by construction of U_{r} (N can be small)
- Unbiased estimator for the marginal $\pi_{r}^{y}\left(x_{r}\right)$
- Pseudo-Marginal trick: redraw $x_{\perp}^{(j)} \sim \mu\left(x_{\perp} \mid x_{r}\right)$ at each MCMC iteration. Then, Markov chain converges to the exact marginal: $x_{r}^{(i)} \sim \pi_{r}^{y}\left(x_{r}\right)$.

Pseudo-Marginal MCMC

$$
\pi_{r}^{y}\left(x_{r}\right) \approx \pi_{N}^{y}\left(x_{r}\right)=\frac{\mu\left(x_{r}\right)}{N} \sum_{i=1}^{N} f^{y}\left(U_{r} x_{r}+U_{\perp} x_{\perp}^{(j)}\right), \quad x_{\perp}^{(j)} \sim \mu\left(x_{\perp} \mid x_{r}\right)
$$

- Low-variance estimator by construction of U_{r} (N can be small)
- Unbiased estimator for the marginal $\pi_{r}^{y}\left(x_{r}\right)$
- Pseudo-Marginal trick: redraw $x_{\perp}^{(j)} \sim \mu\left(x_{\perp} \mid x_{r}\right)$ at each MCMC iteration. Then, Markov chain converges to the exact marginal: $x_{r}^{(i)} \sim \pi_{r}^{y}\left(x_{r}\right)$.

Recycle $x_{\perp}^{(j)}$ to sample from the exact full posterior $\pi^{y}(x)$ ere[Cui \& Zahm 2021] Instead of drawing $x_{\perp}^{(i)} \sim \mu\left(x_{\perp} \mid x_{r}^{(i)}\right)$, pick $\tilde{x}_{\perp}^{(i)} \in\left\{x_{\perp}^{(1)}, \ldots, x_{\perp}^{(N)}\right\}$ at random according to the likelihood weights

$$
\left\{f^{y}\left(U_{r} x_{r}^{(i)}+U_{\perp} x_{\perp}^{(1)}\right), \ldots, f^{y}\left(U_{r} x_{r}^{(i)}+U_{\perp} x_{\perp}^{(N)}\right)\right\}
$$

Then $U_{r} x_{r}^{(i)}+U_{\perp} \tilde{x}_{\perp}^{(i)} \sim \pi^{y}(x)$

Identify the density of a material in a domain of interest (blue square) using five X-ray sources (red points) and $m=$ 100 sensors (blue points)

- Data: $Y \in \mathbb{N}^{m}$ integer-valued vector (number of incident photons)
- Poisson likelihood of the form

$$
f^{y}(x)=\prod_{i=1}^{m} \frac{G_{i}(x)^{y_{i}} \exp \left(-G_{i}(x)\right)}{y_{i}!}
$$

where the forward model $G(x)$ stems from Beer's law.

- Besov-1 (Laplace) prior

$$
\mu(x) \propto \prod_{i=1}^{d=64^{2}} \exp \left(-\lambda\left|x_{i}\right|\right)
$$

- We use coordinate selection to reduce the dimension.

We use Integrated Auto Correlation Time (IACT) to measure the mixing performances of the MCMC.

	IACT	$\sqrt{\operatorname{var}}\left[\log f_{N}^{y}\right]$	
$\sim r=16$	85.1 ± 2.7	1.54 ± 0.02	
\\| $r=32$	54.1 ± 3.1	$0.61 \pm .007$	
$<_{r=48}$	49.4 ± 2.6	$0.45 \pm .002$	
เก $r=16$	60.0 ± 6.2	0.93土.006	
II $r=32$	47.6 ± 2.5	$0.39 \pm .004$	
$<r=48$	46.5 ± 1.4	$0.29 \pm .001$	

IACT of the full-dimensional H-MALA: $\quad 95.9 \pm 3.3$

[^0]
Conclusion

- Detect the low effective dimensionality of Bayesian inverse problems by:
- deriving an upper bound on the error (KL-divergence and Hellinger)
- minimizing the bound (\equiv PCA on $\nabla \log f^{y}$)
- Upper bounds on sampling errors in building the subspace and likelihood approximation
- Extension to data-free:
- find directions that *will be* informed by data with high probability
- provides bound on KL-divergence in expectation
- Exact subspace MCMC computations
[Cui \& Zahm 2021] Data-free likelihood-informed dimension reduction for bayesian inverse problems, Inverse Problems, 37 (4), 045009.
[Cui \& Tong 2022] A unified performance analysis of likelihood-informed subspace methods, Bernoulli 28 (4), 2788-2815.
[Zahm, Cui, Law, Spantini \& Marzouk 2022] Certified dimension reduction in nonlinear Bayesian inverse problems, Mathematics of Computation, 91 (336), 1789-1835.

置[Cui, Law \& Marzouk 2016] Dimension-independent likelihood-informed MCMC, Journal of Computational Physics, 304 (1), 109-137.

囬[Cui, Martin, Marzouk, Solonen \& Spantini 2014] Likelihood-informed dimension reduction for nonlinear inverse problems, Inverse Problems, 30 (11), 114015.

[^0]: ${ }^{1}$ Hessian-preconditioned Metropolis-Adjusted Langevin Algorithm

